
Abstract The improvement of quantitative traits in

plant breeding will in general benefit from a better

understanding of the genetic basis underlying their

development. In this paper, a QTL mapping strategy is

presented for modelling the development of pheno-

typic traits over time. Traditionally, crop growth

models are used to study development. We propose an

integration of crop growth models and QTL models

within the framework of non-linear mixed models. We

illustrate our approach with a QTL model for leaf

senescence in a diploid potato cross. Assuming a lo-

gistic progression of senescence in time, two curve

parameters are modelled, slope and inflection point, as

a function of QTLs. The final QTL model for our

example data contained four QTLs, of which two af-

fected the position of the inflection point, one the

senescence progression-rate, and a final one both

inflection point and rate.

Introduction

The availability of efficient molecular marker systems

has facilitated breeders to identify quantitative trait

loci (QTLs) underlying the expression of economically

important traits in animals and crops. Typically,

quantitative traits are observed at a fixed time point in

development (e.g. at harvest in plants) and QTLs are

detected by linking that phenotypic information with

molecular data through adequate statistical models.

Such QTL models describe the trait state at the mea-

surement time as a function of molecular information

(markers) reflecting the polymorphisms at the DNA

level. The understanding of the genetic basis of a

quantitative trait may profit from modelling not only

the final status of the trait, but also the pattern of

evolution of the trait during development. In this paper

we present an example of how classical QTL models

can be extended to describe final trait values as well as

development by integrating QTL and physiological

growth models.

Studying trait development requires first having

assessments of the trait at several time points during

the life cycle. A simple approach to the problem of

modelling multiple observations in time on the same

trait within the standard QTL analysis framework

would be to consider the observations at individual

time points as independent traits. The analysis then

consists in identifying QTLs at individual time points,

followed by a qualitative comparison of the detected

QTLs across the time points (Bradshaw and Stettler

1995; Price and Tomos 1997; Verhaegen et al. 1997).

An inconvenience of this approach is that instead of

considering development as a continuous process in

time, development is segmented into discrete obser-

vational time points. The absence of a formal integra-

tion of QTLs at individual time points within the same

developmental model makes it difficult to arrive at

biological sensible conclusions. For example, do QTLs

for different time points that occur closely together on
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a chromosome represent a case of pleiotropy (one

QTL expressing itself at more than one time point) or

close linkage (two QTLs appearing closely together)?

In addition to the biological limitations, the approach

suffers from statistical limitations, as QTLs are de-

tected and their effects estimated without considering

the existing correlations between observations on suc-

cessive time points. Wu et al. (1999) proposed to ad-

dress the problem of the non-independence of trait

values over time by using a multivariate regression

procedure in which the observations at different time

points constitute a set of responses, while the marker

information generates a set of predictors. Although

this approach alleviates the problem of ignoring the

correlations between consecutive observations, still it is

not biologically attractive as it describes the develop-

mental process as a discrete collection of time points.

Besides, it requires all the individuals to be measured

at the same time points, which is often impossible.

From a biological point of view, there is a need for a

unified modelling framework to investigate the genet-

ics of trait development. In addition, such a modelling

framework should be flexible enough to be adapted to

the usually non-linear trait responses over time. Phys-

iology-inspired growth models are attractive candi-

dates to play a central role in that. Examples of

commonly used models in biology are the linear and

exponential growth models (that assume non-limiting

growth), and the family of S-shaped curves where

growth converges to a maximum (Schnute 1981). A

desirable property of such growth models is that the

state of the trait is described at any moment in devel-

opment rather than at a discrete collection of time

points at which the trait was actually observed. More

importantly, the development process is described by a

reduced number of curve parameters that can be

interpreted in biological terms (e.g. the relative rate of

growth, moment of maximum growth rate, etc). The

variability in growth (development) trajectories

between individual genotypes is reflected by genotype-

specific curve parameters. A link between physiologi-

cal models and QTL models can be established by

modelling the genetic basis of the growth curve

parameters in terms of QTLs. In a physiological QTL

model, the phenotypic response is predicted from the

curve parameters in combination with environmental

input and/or time, where the curve parameters are

linear functions of underlying QTLs, unspecified po-

lygenes, and environmental and developmental noise.

Examples of this approach have been presented re-

cently for leaf growth in rice (Oryza sativa L.)

(Wu et al. 2002b), stem diameter growth in trees

(Populus spp.) (Ma et al. 2002), leaf elongation in

maize (Zea mays L.) (Reymond et al. 2003), and

flowering time in barley (Hordeum vulgare L.) (Yin

et al. 2005).

A relatively straightforward approach to combine

growth modelling with QTL analysis consists of the

following two-step procedure. In the first step, obser-

vations at successive time points are used to estimate

individual-specific parameters of a given growth curve

model, where after in the second step, conventional

QTL analysis is applied to the curve parameter esti-

mates of the first step, interpreting these estimates as

standard phenotypic traits. This strategy has been

proven to produce satisfactory results (Reymond et al.

2003; Yin et al. 2005) and has as a strong point in fa-

vour, its relatively simple implementation. However,

this two-step approach will be far from optimal when

curve parameters are estimated imprecisely. The main

drawback of the two-step procedure is that in the QTL

analysis the uncertainty in parameter estimates is not

taken into account and neither is the correlation be-

tween the parameters, with as a consequence possible

loss of power for QTL detection and incorrect esti-

mates and standard errors (Verbeke and Molenberghs

2000).

An immediate approach to the modelling of growth

trajectories was formulated by Ma et al. (2002). They

combine logistic growth curves and QTL mapping

within a mixture model approach, modelling growth

curves parameters as a function of molecular marker

information. The approach is implemented within an

expectation-maximization (EM) algorithm and proved

to be powerful and to produce accurate estimates of

QTL effects and positions (Wu et al. 2002a, 2003a).

The methodology was further generalized to allow

changing growth rates during development (Wu et al.

2003b).

As we consider mixture model approaches to be

somewhat inflexible with respect to the inclusion of

additional design and treatment features, we have

developed an alternative to the modelling of growth

curves that is based on a non-linear extension of clas-

sical mixed models. We start below with the descrip-

tion of some well known deterministic growth curves

and proceed from there to the definition of flexible

genetic models for growth curves in the context of non-

linear mixed models, where curve parameters are

governed by QTLs. We illustrate our methodology by

an example consisting of multiple observations on leaf

senescence in a diploid potato cross (Solanum phureja

L. · Solanum tuberosum L.) (Celis-Gamboa 2002). We

conclude on a multiple QTL model using composite

interval mapping (Jansen and Stam 1994; Zeng 1994),

thereby extending a single QTL non-linear mixed
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model approach as used by Rodriguez-Zas et al. (2002)

for mapping QTLs affecting lactation curves in diary

cattle.

Materials and methods

Data

The potato phenotypic and molecular data used in this

research was produced by Celis-Gamboa (2002) who

conducted an extensive evaluation of a diploid off-

spring originating from an interspecific cross between

S. phureja and S. tuberosum. We give a brief descrip-

tion of the cross and the data set that we used in this

research, but for more detailed information (e.g. with

respect to the genetic background of maternal and

paternal genotypes of the cross) the reader is referred

to the original publications (Celis-Gamboa 2002, 2003).

Many traits were evaluated at various time points

spaced at intervals of 1–2 weeks, but we concentrate on

plant senescence as observed for 205 genotypes.

Senescence was defined by a score on a scale from 1 to

7 that expressed the overall condition of the plant

(1 = all leaves green and 7 = all leaves brown/yellow).

Although measured at an ordinal scale, it turned out

that for all practical and statistical purposes, senes-

cence could be treated as a continuous variable. We

used the evaluations taken at 64, 75, 89, 96, 110, 125,

140, 155, 170, and 185 days after planting. The popu-

lation was genotyped on the basis of amplified frag-

ment length polymorphisms (AFLPs) (Vos et al. 1995).

As AFLP is a dominant marker system, for which band

presence and absence is scored, and as potato is

an outbreeding crop species, a cross between a

maternal and a paternal plant produces three types of

polymorphic bands: (1) bands that are heterozygously

present in the maternal genotype (S. phureja)

and homozygously absent in the paternal genotype

(S. tuberosum), (2) bands that are heterozygously

present in both parents, and (3) bands that are homo-

zygously absent in the maternal genotype and hetero-

zygously present in the paternal parent. While markers

in groups 1 and 3 segregate in a 1:1 ratio (pres-

ence:absence), those in group 2 segregate in a 3:1 ratio.

Maps were constructed by Celis-Gamboa (2002) fol-

lowing the pseudo-testcross approach (Grattapaglia and

Sederoff 1994), leading to one map for the S. phureja

genome and another map for the S. tuberosum

genome. In this paper, we used the S. tuberosum

map, which contained 178 markers (type 3 markers)

distributed over 12 linkage groups, spanning a total of

784 cM.

The phenotypic model

We will describe a general QTL methodology for

developmental traits, but to keep notation and treat-

ment simple we will restrict ourselves to the logistic

curve, that in a preliminary study fitted the senescence

curves well (Celis-Gamboa 2002). The logistic curve

will serve as an example for the wider class of non-

linear developmental curves in which other examples

are the exponential, Gompertz and Richards curve.

Assume that a generic, non-stochastic model for the

progression of the senescence score for a potato

genotype in our example data set is given by the fol-

lowing logistic curve:

f ðtÞ ¼ cþ d

1þ exp�bðt�aÞ ð1Þ

where each of the four parameters has its own bio-

logical interpretation; a is the point in time when half

of the process (cycle) has been completed and to which

we will refer as mid-senescence, b represents the

senescence progression rate at mid-senescence, to

which we will refer below as rate, c is the lower

asymptote (minimum score value), and d is the differ-

ence between the lower and the upper asymptote,

difference between minimum and maximum score va-

lue (Fig. 1).

The generic model of Eq. 1 can be converted into a

stochastic, genotype specific model by making the

curve parameters dependent on the genotype and

introducing an error term. When we write for the lo-

gistic function in Eq. 1, f(t; a i, b i, c i, di), and when we

assume that the lower and upper asymptote are the

same for all genotypes then the developmental process

for genotype i becomes

y
i
ðtÞ ¼ f ðt; ai; bi; c; dÞ þ eiðtÞ ð2Þ
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Fig. 1 Schematic representation of senescence progression and
the relationship between the parameters and the curve charac-
teristics
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where the senescence score for genotype i at time point

t, y
i
ðtÞ; is a function of the fixed parameters ai, bi, c, and

d. In the senescence example the parameters c and d
are constrained to be equal for all genotypes since the

minimum and maximum senescence scores were the

same for all the genotypes (minimum score is 1 so

c = 1, and maximum score is 7 so d = 6). Therefore,

these parameters will be omitted from model descrip-

tions below. Finally, the error term eiðtÞis assumed to

be independently normally distributed with mean 0

and variance r2. For the type of data we are studying,

some form of autocorrelation between subsequent

measurements on the same plant would have been

plausible. However, the observations in time for

senescence on the potato genotypes came from dif-

ferent plants, as each time a small part of the experi-

mental plots was harvested. As expected, for our

senescence data we found no indication for autocor-

relation in a model with genotype specific rates and

mid-senescence times. Therefore, we refrain from

modelling the autocorrelation for the residual error in

this paper, although our description can be extended to

allow for it. For the sake of clarity, here and hereafter,

we will underline the random variables in the model

formula.

Model (2) is an example of a fixed, non-linear

model, where the only random term is the residual

error. In such a fixed model, the estimation of the

genotype specific curve parameters is based on the

observations for the individual genotypes, no infor-

mation from other genotypes is used. In contrast,

within a mixed model formulation, parameter esti-

mates would be based on a combination of observa-

tions for the specific genotype and observations on

other genotypes. Furthermore, a mixed model would

provide a more realistic model as the inaccuracy and

imprecision of the parameter estimates as well as the

correlation between the parameters is explicitly taken

into account. A mixed model specification for senes-

cence can then be:

y
i
ðtÞ ¼ f ðt; a0 þ a�i ; b0 þ b�i Þ þ eiðtÞ; ð3Þ

where the main difference with model (2) is that the

mid-senescence and rate parameters in model (3) are

now modelled as a combination of fixed and random

effects. Model (3) is a so-called subject-specific model

(Davidian and Giltinan 2003), where the fixed param-

eters a0 and b0, for mid-senescence and rate respec-

tively, are common to all genotypes, while the random

deviations a�i and b�i ; for mid-senescence and rate

respectively, are specific to the genotypes. For the

random parameters a�i and b�i we assume a multi-normal

distribution with zero mean and variance-covariance

matrix R� ¼ r2
a�

ra� b� r2
b�

� �
: The residual term eiðtÞis

assumed to be independent and normally distributed
with mean 0 and variance r2.

Model (3) is an example of a non-linear mixed

model. Such models are very suitable for the simulta-

neous modelling of growth curves for a collection of

organisms. A good overview of theory and applications

of non-linear mixed models is given by Davidian and

Giltinan (2003).

The QTL model: including molecular information

in the model

In model (3), no genetic information other than the

identification of the genotypes themselves is consid-

ered. The genetic variance for the mid-senescence and

rate parameter, ra*
2 and rb*

2 , is caused by the variation

in all the genes affecting the curve parameters. The

inclusion of molecular marker information in the

model would allow to evidence specific chromosomal

regions (QTLs) as contributing to the genetic variation

of those parameters. A straightforward extension of

model (3) that accounts for variation due to QTLs

consists in introducing an extra fixed term for the

contribution of putative QTLs to the curve parameters.

Hence, a single QTL mixed model, with the QTL

affecting both mid-senescence time and rate is:

y
i
ðtÞ¼ f ðt; a0þXimamþai;b0þXimbmþbiÞþ eiðtÞ; ð4Þ

where am and bm represent the fixed effects of a puta-

tive QTL locus at position m on the mid-senescence and

rate parameters respectively, and ai and bi are pheno-

typic individual-specific random residuals for both the

curve parameters with mean zero and variance-covari-

ance matrix R ¼ r2
a

ra b r2
b

� �
: The residual term eiðtÞ

is assumed to be independently normally distributed

with mean 0 and variance r2. In the case of marker

regression, i.e., QTL detection tests are performed only

at genomic positions coinciding with marker loci

(Lynch and Walsh 1998), the indicator variable Xim is a

simple function of the observed genotype for marker

locus m. For our potato example, Xim can be taken

equal to 1 whenever an AFLP band is present, and the

individual is actually heterozygous at that locus, while

Xim is 0 for band absence, and the individual is homo-

zygous at that locus. The estimated QTL effects for

am and bm can then be interpreted as the difference
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in mid-senescence and rate, respectively, between

individuals being heterozygous and homozygous.

Using the more powerful approach of interval

mapping (Lander and Botstein 1989), requires the term

Xim to give a probabilistic statement about the QTL

genotypes at any particular chromosome position and

not exclusively at marker positions. For most standard

populations obtained from crosses between inbred

lines, the information from flanking markers can be

used to estimate at any chromosome position the

conditional probabilities of the possible QTL geno-

types (Lynch and Walsh 1998). For our potato data,

Xim represents the probability of the heterozygous

state of the QTL at position m, and the complement

(1– Xim) is the probability of the homozygous state for

the same QTL.

The QTL analysis: scanning the genome for QTLs

After the definition of a model framework, the next

step is to identify within the set of all possible models

the best one for the data under study. The vast amount

of possible models makes an exhaustive search infea-

sible, so we need to define a strategy to guide us

throughout the model space in search of the best

model. There is no unique best strategy for doing this,

and model-search strategies within QTL mapping are

therefore still a matter of discussion. We propose a

procedure in which we: (1) do a genome scan based on

simple interval mapping (SIM) assuming QTLs will

affect both rate and mid-senescence, (2) identify a set

of potential cofactors (covariables to be used in further

genome scans) based on the results of the SIM run, (3)

choose a final set of cofactors for inclusion in com-

posite interval mapping (CIM) by backward selection

from the cofactor set of the previous step, (4) do CIM,

and (5) select a final multi-QTL model by testing

whether the selected QTLs from CIM indeed affect

both rate and mid-senescence or only one of the two.

For the SIM step, we fit model (4) along the chro-

mosomes at particular step length by maximum likeli-

hood. For the potato data we used an interval of 4 cM

(or shorter when consecutive markers mapped less

than 4 cM apart). At each chromosome position, we

test for the global effect of the QTL on the curve tra-

jectory by a log-likelihood ratio test comparing a full

model with a QTL affecting both rate and mid-senes-

cence against a reduced model without QTL effects.

The log-likelihood ratio is defined as:

LR ¼ �2ln
Likelihood reduced model

Likelihood full model

� �
; ð5Þ

where ln stands for the natural logarithm. Statistical

significance for the test can be assessed by comparing

LR with a chi-square distribution with two degrees of

freedom. A correction for multiple testing is required.

Based on simulations (results not shown), we suggest a

Bonferroni correction with a genome wide test level of

ag = a/n with a the test level for an individual test and

n = [length of genome in cM/10]. For example, with

a = 0.05 and a genome of 1,000 cM, ag = 0.05/[1,000/

10] = 0.0005. The LR is plotted along the chromo-

somes to produce a profile where QTLs and their most

probable positions are indicated by peak values

exceeding the defined significance critical LR value.

The peaks observed in the LR plots from the SIM

analysis form a set of potential cofactors. Before doing

a CIM analysis a definite set of cofactors is selected by

a backward selection procedure starting from a model

including all putative cofactors and then testing for the

effect of removing each cofactor from the set by a LR

test. The cofactor whose removal produces the lowest

non-significant LR is removed after which the proce-

dure is repeated until all cofactor produce a significant

LR test after being removed from the set.

When applying CIM, background genetic variation

caused by other QTLs is controlled by including co-

factors in the model (Jansen and Stam 1994; Zeng

1994). A CIM scan will fit the following model along

the chromosome:

y
i
ðtÞ ¼f ðt; a0 þ

X
ceC

Xicac þXimam þ ai; b0

þ
X
ceC

Xicbc þXimbm þ biÞ þ eiðtÞ ð6Þ

where
P

ceC Xicac and
P

ceC Xicbc represent QTLs

affecting mid-senescence and rate at positions other

than the position under evaluation, while Ximam and

Ximbm stand for the QTL under test. During a CIM

genome scan a LR test is performed comparing model

(6), at position m, with the following model (7):

y
i
ðtÞ¼ f ðt; a0þ

X
ceC

Xicacþai;b0þ
X
ceC

XicbcþbiÞþ eiðtÞ:

ð7Þ

For our potato example, we chose to do a LR test at

every marker position and at every 4 cM, starting from

the closest marker. For evaluations close to a cofactor,

we defined a window of 10 cM at either side of the

cofactor within which the particular cofactor was

temporarily removed from the model.

LR test profiles are produced for the overall test of

the QTL affecting the curve trajectory, and QTLs are
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identified at profile peak values provided that the peak

exceeds the threshold LR value. The critical value for

CIM is taken equal to that for SIM. The QTL model

selected after CIM looks like:

y
i
ðtÞ¼ f ðt; a0þ

X
qeQ

Xiqaqþai;b0þ
X
qeQ

XiqbqþbiÞþ eiðtÞ;

ð8Þ

with Q the set of selected QTLs.

A final refinement consists in searching for more

parsimonious QTL models by testing whether QTLs

affects both mid-senescence and rate or only one of the

two parameters. We compare the reduced models (9a)

and (9b) with the full model (8)

y
i
ðtÞ¼ f ðt; a0þ

X
qeQ�

Xiqaqþai;b0þ
X
qeQ

XiqbqþbiÞþ eiðtÞ;

ð9aÞ

y
i
ðtÞ¼ f ðt; a0þ

X
qeQ

Xiqaqþai;b0þ
X
qeQ�

XiqbqþbiÞþ eiðtÞ;

ð9bÞ

where Q* is equal to Q, the set of selected QTLs in

CIM, minus the QTL for which the significance of mid-

senescence or rate parameter is tested. The QTL effect

on a particular parameter is unimportant whenever a

non-significant LR follows from removal of that par-

ticular parameter from the model. Assuming the pres-

ence of a QTL for either or both of mid-senescence and

rate at the test position, the LR statistic follows a Chi-

square distribution with one degree of freedom.

Fitting the models

Non-linear mixed models like the ones discussed above

can be fitted with the SAS macro NLINMIX that is

available from anonymous ftp (http://www.support.

sas.com/ctx/samples/index.jsp?sid=539) (Littell et al.

1996). We fitted our models using maximum likelihood

in combination with the estimation method of Lind-

strom and Bates (1990), which was specified in

NLINMIX by the option settings ‘method=ml’ and

‘expand=eblup’. To stabilize the variance of the rate

parameter we worked with its log transform. Detailed

descriptions and comparisons of estimation and infer-

ence procedures can be found in Davidian and Giltinan

(2003). Before fitting the various models, we calculated

genetic predictors, Xim, at a grid of positions along the

genome following an algorithm described by Jiang and

Zeng (1997). These predictors were then included in

the models as explanatory variables.

Results

For our senescence data in potato, the LR profile for

SIM showed peaks above the critical threshold on

chromosomes V and VI (Fig. 2). Chromosome V was

important in determining the senescence curve as it

contained three significant peaks, at approximately 34,

59, and 86 cM (we will identify those positions as

putative cofactors c51, c52, and c53, respectively).

These peaks are a first indication that several putative

QTLs could be located on chromosome V, albeit such

conclusions should be taken with caution at this stage

of the analysis. The reason is that this result was de-

rived from a one-QTL model and we cannot rule out a

‘ghost’ QTL arising as a consequence of close prox-

imity to neighbouring QTLs. Two peaks were observed

close to the beginning of chromosome VI, at 0 and

17 cM, and we identify them as putative cofactors c61,

and c62, respectively.

The backward selection procedure selected only

some of the cofactors in the initial set to be included in

the next round of mapping (Table 1). This was ex-

pected as the initial set of cofactors included points

rather close to each other on the chromosome, so it was

likely that some of them had turned up because of

other QTLs nearby on the chromosome. The selected

positions for cofactors were the points on chromosome

V at 34 and 86 cM (c51 and c53, respectively), and the

point at 0 cM on chromosome VI (c61).

In comparison with SIM, CIM showed a simpler

picture on chromosome V, and allowed to detect an

extra QTL on chromosome XII (Fig. 2). The lower

level of the LR profile for CIM in comparison to SIM is

due to the upward bias from neighbouring QTLs for

SIM. On chromosome V, the two CIM peaks were at

34 and 90 cM. These two QTLs will hereafter be re-

ferred to as Q5A and Q5B, respectively. On the initial

part of chromosome VI two peaks were observed, at 0

and 7 cM. Given the short distance between both

peaks we are inclined to explain this by possible inac-

curacies in marker positions on the map rather than by

the presence of two QTLs in this region. Since the

position at 0 cM gave the highest peak value, we

identify the QTL at that position and we refer to it as

Q6. Finally, on chromosome XII one QTL was evi-

denced by a peak around 36 cM (Q12). A second peak

around 11 cM was just above the significance thresh-

old. The final model from the CIM scan was thus a

QTL model with five QTLs. However, the second QTL

on chromosome 12, although significant in the CIM

scan, disappears when comparing the final 5-QTL

model with a 4-QTL model without this QTL by means

of a LR test.
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In summary, after the CIM step, we have detected

four QTLs affecting the leaf senescence trajectory

curve. The aim of the next step is to answer the

question how each of these QTLs affects the devel-

opment curve. Three alternatives are possible: (a) the

QTL only affects rate, (b) the QTL only affects mid-

senescence, or (c) the QTL affects both rate and mid-

senescence. The results of the LR used to compare the

different situations for each of the four QTLs are

presented in Table 2. For Q5A the LR was not signifi-

cant when removing the rate parameter indicating that

the effect of this QTL on the rate is unimportant.

Therefore, Q5A affects the senescence curve by altering

the mid-senescence parameter. The other QTL on

chromosome V, Q5B, affected both mid-senescence

and rate since the drop of any of the corresponding

terms from the model produced a significant LR test.

In summary, on chromosome V there are two QTLs

affecting senescence although in a different way, while

the effect of Q5A is related only to the moment at

which half of the process is completed, Q5B has an

effect on both the moment at and the rate with which

the senescence progresses once the process is launched.

A different situation was observed for Q6 that only
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affected the rate parameter (the drop of the mid-

senescence parameter from the model produced a non-

significant LR). Finally, Q12 affected only the mid-

senescence parameter, a similar type of action as Q5A.

So, our final multi-QTL model included two QTLs

affecting only mid-senescence (Q5A and Q12), one QTL

affecting only the rate (Q6), and one QTL affecting

both parameters (Q5B). From the estimated QTL ef-

fects we calculated predictions for the senescence val-

ues at individual time points and then correlated those

predictions with observed senescence values for each

genotype individually. The average squared correlation

coefficient between predicted and observed senescence

values across genotypes was 0.74, proving a satisfactory

goodness of fit of the QTL model to the data.

In Table 3 we present the point estimates (and the

corresponding 95 confidence intervals) of the model

parameters associated with each QTL as provided by

SAS. The parameters represent the difference between

the heterozygous QTL genotype QtQp and the homo-

zygous QTL genotype QpQp, with superscript t

for Solanum tuberosum and p for Solanum phureja.

For example, the heterozygous Qt
5AQ

p
5A reaches 50%

development of senescence approximately 26 days

earlier (effect of –25.8) than the homozygous Q
p
5AQ

p
5A.

Conversely, for the other two QTLs affecting the mid-

senescence parameter (Q5B and Q12), the estimates

had a positive sign, meaning that the heterozygous

genotypes Qt
5BQ

p
5B and Qt

12Q
p
12 will attain the 50% of

senescence approximately 15 and 12 days later than

the homozygous genotypes Q
p
5BQ

p
5B and Q

p
12Q

p
12

respectively. Before describing the QTL estimates

associated with rate, it needs to be mentioned that the

values presented in Table 3 are back-transformations

from a logarithmic scale, so rather than being additive

they represent multiplicative effects. Therefore, the

heterozygous QTL genotype QtQp will increase the

rate with respect to the homozygous QpQp genotype

when the parameter value is larger than 1 and will

reduce the rate when the value is smaller than 1. The

rate parameter is reduced by a factor of 0.58 when at

Q5B the genotype contains one copy of the S. tubero-

sum allele ðQt
5BQ

p
5BÞ in comparison to the genotype

consisting of only S. phureja alleles (Q
p
5BQ

p
5B). In bio-

logical terms the lower the rate the slower the pro-

gression of senescence. Finally, for Q6 the presence of

the S. tuberosum allele determines a slower progres-

sion of the senescence process (a reduction in the rate

parameter by a factor of 0.72) in comparison to the

progression observed in the homozygous Q
p
6Q

p
6geno-

type.

An overall visualization of the QTL effects in time

can be made by comparing the predicted progression

of senescence for hypothetical genotypes differing in

allele composition for the detected QTLs. For exam-

ple, in Fig. 3a the comparison is made between two

hypothetical genotypes differing only in the constitu-

tion of Q5A while being homozygous QpQp for the

other three QTLs. The plot shows that the heterozy-

gous genotype Qt
5AQ

p
5A senesce earlier than the

homozygous genotype Q
p
5AQ

p
5A although the rate of

progression is the same as both curves are parallel. The

plot reflects the fact that this particular QTL does not

affect the speed with which the senescence progresses,

but only the timing of senescence. Figure 3b illustrates

another situation in which the genotypes Qt
5BQ

p
5B and

Q
p
5BQ

p
5B differ in both the moment at which they reach

50% senescence (later in the heterozygous than in the

homozygous genotype) and in the rate of senescence

(faster in the homozygous than in the heterozygous

Table 1 Results of a backward selection procedure to exclude
redundant cofactors from the QTL model. At each step the LR is
calculated between the full model (the best from previous step)
and a reduced model in which one cofactor (indicated with a
minus sign) is removed. The best model in each step is indicated
in bold. In the last step none of the models was superior to the
full model and therefore none of them is in bold

Cofactors in the model –2LLa LRb

Step 0 c51 + c52 + c53 + c61 + c62 752.2
Step 1 –c51 775.7 23.4**

–c52 752.4 0.2
–c53 769.6 17.3**
–c61 758.6 6.3*
–c62 753.5 1.3

Step 2 –c51 789.4 37.0**
–c53 774.8 22.4**
–c61 759.1 6.7**
–c62 753.5 1.1

Step 3 –c51 791.1 37.7**
–c53 775.0 21.5**
–c61 776.7 23.2**

*P < 0.05; **P < 0.01
aLL log likelihood
bLR=–2LL(reduced)–[–2LL(full)]

Table 2 LR between the full model (QTL affecting both rate
and mid-senescence parameters) and a reduced model in which
either the rate or the mid-senescence parameter are excluded
from the model. The used critical LR value corresponds to the
0.99-upper limit of a chi-square distribution with one degree of
freedom (6.63)

LR after dropping QTL effect for

Rate Mid-senescence

Q5A 5.9 46.2**
Q5B 20.2** 11.3**
Q6 20.6** 4.2
Q12 0.6 15.0**

**P < 0.01
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genotype). The plot in Fig. 3c shows the situation for

Q6 in which the inflection point is attained at approx-

imately the same time but the rate is faster for the

homozygous genotype (Q
p
6Q

p
6) than for the heterozy-

gous genotype (Qt
6Q

p
6). Finally, in Fig. 3d we present

the comparison between genotypes with a different

constitution at Q12. While the rate of progression of

senescence is similar for both the homozygous

(Q
p
12Q

p
12) and the heterozygous (Qt

12Q
p
12) genotypes

(parallel trajectory curves), the process occurs earlier

in the former than in the latter.

Discussion

The study of the genetics underlying the variation of

economically important traits in plants and animals has

been largely driven by models that describe traits at a

fixed moment in time. The obvious reason for this is

that, in general, traits are observed at the time of

greatest importance, whether this is biological or eco-

nomical. For example, plants typically are observed at

fixed stages in development as anthesis, maturity, and

harvest time. However, any phenotype is an integrated

function over time with at least one of the arguments

depending on gene (QTL) action under specific (and

generally changing) environmental conditions. The

inclusion of a time dimension in the QTL model would

allow addressing questions related to the effect of

QTLs throughout the life cycle. To that purpose, we

presented a modelling framework that integrates

growth models and QTL modelling. There are several

reasons that make this approach attractive: (1) it brings

together genetics and physiology, thereby gaining

interpretability of results from both perspectives, (2) it

provides breeders and geneticists with better oppor-

tunities to detect QTLs as the genetic variation in

question is increased by considering the entire devel-

opmental process and not just the final trait state, (3) it

provides breeders with insights into the most effective

way to genetically shape trait development to attain

breeding objectives, (4) it provides geneticists with

clues about possible QTL functions that can be used to

follow up on the search for candidate genes, (5) it often

confers higher power for finding QTLs than analyses at

individual time points.

To illustrate some of the above points, we compared

our non-linear mixed model analysis of senescence

with a series of individual time point analyses. For the

analyses per time point we took a procedure typically

followed by breeders, namely a CIM analysis by a

special purpose QTL package, in our case MapQTL

(van Ooijen 2004). LR profiles for CIM analyses by

MapQTL of individual time points are shown in Fig. 4

together with the LR profile of the non-linear mixed

model analysis. The LR profiles for both types of

analysis are comparable as they involve two parame-

ters in both cases, although not the same ones, of

course. In Fig. 4, genome wide test levels of 0.05 are

included for both the individual time point analyses,

where a Bonferroni correction for multiple traits has

been applied, and the non linear mixed model analysis.

The set of time-point analyses revealed less QTLs than

the non-linear mixed model analysis. Only the QTLs

on chromosome V were detected by some of the time

point analyses, while neither the QTL on chromosome

VI nor the one on chromosome XII was detected at

any of the time points. In addition, the biological

information of this latter QTL analysis is rather limited

and difficult to interpret in comparison to our non

linear mixed model approach. For example, the QTL

on chromosome V had an effect on days 89, 96, 110

(the largest effect), and 125, but not on days 75 and

155. Questions on pleiotropy versus close linkage also

arise easily from individual time points analyses,

without there being a simple way to resolve them.

By modelling leaf senescence in potato, we showed

that we were able to not only identify four different

Table 3 Parameter estimates and the associated 95% confidence intervals from the fit of a model with four QTLs. The QTLs are
located on chromosome V at 34 cM (Q5A), and at 90 cM (Q5B), on chromosome VI at 0 cM (Q6), and on chromosome XII at 36 cM
(Q12)

Ratea Mid-senescence

Estimate Lower Upper Estimate Lower Upper

Intercept 0.43 0.35 0.52 105.9 97.5 114.3
Q5A NE NE NE –25.8 –33.4 –18.3
Q5B 0.58 0.46 0.72 14.6 7.2 21.9
Q6 0.72 0.60 1.15 NE NE NE
Q12 NE NE NE 11.7 5.8 17.7

NE no effect
aBack-transformed from a log10 scale, therefore the effects are multiplicative rather than additive
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QTLs affecting the process of leaf senescence, but also

to distinguish between QTLs that delay senescence and

QTLs that affect the rate with which senescence ad-

vances. The distinction between such types of QTL

effects reflects two types of senescence-response asso-

ciated with stay-green genotypes: a delayed onset of

senescence (also called type A response), and a slow

progression of senescence (or type B response) (Tho-

mas and Howarth 2000). The underlying mechanisms

for these two types of senescence responses are prob-

ably different. For example, in Sorghum bicolor L.

some stay-green genotypes show type A response while

others show type B response (Borrell et al. 2000). The

fact that we found QTLs determining delayed senes-

cence and QTLs affecting the rate of progression that

largely did not co-locate is in accordance with possibly

different underlying mechanisms affecting the rate and

the timing of senescence.

Selection of QTL alleles affecting senescence curve

parameters should be more effective than the selection

of alleles for QTLs detected by analysis of senescence

responses at individual time points. From a plant

breeder’s point of view, the independence of QTLs

shaping different aspects of the senescence curve cre-

ates good prospects for independent selection of the

underlying parameters. From the point of view of a

geneticist, interested in identifying and ultimately

cloning genes, these results provide insights that can be

used for finding relations between the detected QTLs

and earlier described so-called senescence-associated

genes (SAGs). For example, in the model species

Arabidopsis thaliana different regulatory genes have

been described for the onset of senescence and for the

rate of senescence, respectively (Gepstein et al. 2003).

The statistical methodology used in this paper, a

one-step approach modelling parameters for growth

curves and underlying QTLs simultaneously, is tech-

nically more complex than a two-step approach in

which first curve parameters are estimated for each

genotype individually and next these curve parameter

estimates are introduced as traits in a traditional QTL

analysis. Although the philosophy behind both ap-

proaches is similar, the one-step procedure, in our case

based on a mixed model formulation, has an advantage

over the two-step approach from the inferential point

of view. The statistical argument for a mixed model is

that it offers extra flexibility for modeling the data

more realistically by accounting for the different

sources of variation and the resulting correlation

structures present in the data. This does not mean that

the two-step strategy cannot lead to satisfactory results.

The differences between the performances of both

approaches will depend on the complexity of the data

under study.
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Fig. 3 Predicted senescence development of genotypes differing
in genotype for each of the four detected QTLs; a Q5A, b Q5B, c
Q6, and d Q12. The two alternative genotypes at the QTLs are

heterozygous with one allele from S. tuberosum and the other
from S. phureja (QtQp), and homozygous carrying both alleles
from S. phureja (QpQp)
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The advantages of the one-step non-linear mixed

model approach come at the price of a higher demand

on statistical modeling skills and higher computing

loads for inference. It is encouraging, however, to ob-

serve that for both the theory and practice of non-

linear mixed models the literature grows quickly

(Davidian and Giltinan 2003), so that for practitioners

more examples come available as well as more user

friendly software. The estimation procedure for non-

linear mixed models that we used for our potato

example, is widely used in practice and it is acknowl-

edged to work well (Davidian and Giltinan 2003). The

procedure has been shown to be robust against non-

normality of the random effects and possible model

misspecifications (Hartford and Davidian 2000).

As a competitor to the use of non-linear mixed

models for the QTL modeling of growth trajectories,

mixture model approaches using EM estimation pro-

cedures have been proposed (Ma et al. 2002; Wu et al.

2002a, 2003a). The difference between the mixture

model approach and our mixed model approach is that

we approximate the mixture density for the phenotype

in relation to the possible QTL genotypes for a partic-

ular place at the genome (Jansen 1992, 1993; Zeng 1993,

1994) with a normal density following the regression

approach of Haley and Knott (1992) and Martı́nez and

Curnow (1992). Although, the mixture model is more

exact, in practice the differences between mixture and

regression/mixed model approaches are small (Haley

and Knott 1992; Kao 2000). An attractive advantage of

regression/mixed models is the higher flexibility for

including multiple environments, genotype by envi-

ronment interaction and QTL by environment inter-

action (Malosetti et al. 2004), and experimental design

details (Smith et al. 2001; Verbyla et al. 2003), because

only standard statistical software with regression/mixed

model facilities is required in which it is comparably

easy to update model definitions.

The mixed model approach for identifying the ge-

netic factors governing development can also be applied

for investigating the relation between phenotype and

genotype in its dependence on environmental factors.

The approach is compatible with the philosophy of

gene-to-phenotype models like the ones presented by

Reymond et al. (2003) and Yin et al. (2005), a promis-

ing field for the understanding of complex genotype by

environment interaction. The inherent complexity of

quantitative trait performance under different environ-

mental circumstances requires more elaborate models

without losing biological relevance. It is precisely in this

context that the fruitful combination of statistical and

eco-physiological models is put forward as a promising

tool (Tardieu 2003; van Eeuwijk et al. 2005).

A challenge that we took up in this paper is to make

physiologists, geneticists, and breeders acquainted with

the possibilities for including developmental trajecto-

ries in QTL analysis by means of non-linear mixed

models. We feel that the advantages for biological

interpretation of our approach outweigh the extra ef-

forts in statistics.
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